To find the work done in dividing a liquid drop into smaller drops, we need to consider the change in surface energy due to the change in total surface area.
Therefore, the work done in the process is \( 8\pi R^2 T \), which matches the correct answer given in the options.
Step 1. Volume Conservation:
Since the total volume of the liquid remains constant, we equate the volume of the original drop to the combined volume of the 27 smaller drops.
For the original drop:
\(\frac{4}{3}\pi R^3\)
For the 27 smaller drops (each of radius \( r \)):
\(27 \times \frac{4}{3}\pi r^3\)
Equating the volumes:
\(\frac{4}{3}\pi R^3 = 27 \times \frac{4}{3}\pi r^3\)
\(R^3 = 27r^3 \implies r = \frac{R}{3}\)
Step 2. Calculate the Surface Areas:
- Surface area of the original drop:
\(A_{\text{initial}} = 4\pi R^2\)
- Surface area of the 27 smaller drops:
\(A_{\text{final}} = 27 \times 4\pi r^2 = 27 \times 4\pi \left(\frac{R}{3}\right)^2 = 27 \times 4\pi \frac{R^2}{9} = 12\pi R^2\)
Step 3. Calculate the Work Done :
The work done in increasing the surface area is given by: \(\text{Work done} = T\Delta A = T(A_{\text{final}} - A_{\text{initial}})\)
\(= T(12\pi R^2 - 4\pi R^2) = T \times 8\pi R^2\)
Thus, the work done in the process is \( 8\pi R^2 T \).
The Correct Answer is:\( 8\pi R^2 T \)
Two soap bubbles of radius 2 cm and 4 cm, respectively, are in contact with each other. The radius of curvature of the common surface, in cm, is _______________.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
