To find the work done in dividing a liquid drop into smaller drops, we need to consider the change in surface energy due to the change in total surface area.
Therefore, the work done in the process is \( 8\pi R^2 T \), which matches the correct answer given in the options.
Step 1. Volume Conservation:
Since the total volume of the liquid remains constant, we equate the volume of the original drop to the combined volume of the 27 smaller drops.
For the original drop:
\(\frac{4}{3}\pi R^3\)
For the 27 smaller drops (each of radius \( r \)):
\(27 \times \frac{4}{3}\pi r^3\)
Equating the volumes:
\(\frac{4}{3}\pi R^3 = 27 \times \frac{4}{3}\pi r^3\)
\(R^3 = 27r^3 \implies r = \frac{R}{3}\)
Step 2. Calculate the Surface Areas:
- Surface area of the original drop:
\(A_{\text{initial}} = 4\pi R^2\)
- Surface area of the 27 smaller drops:
\(A_{\text{final}} = 27 \times 4\pi r^2 = 27 \times 4\pi \left(\frac{R}{3}\right)^2 = 27 \times 4\pi \frac{R^2}{9} = 12\pi R^2\)
Step 3. Calculate the Work Done :
The work done in increasing the surface area is given by: \(\text{Work done} = T\Delta A = T(A_{\text{final}} - A_{\text{initial}})\)
\(= T(12\pi R^2 - 4\pi R^2) = T \times 8\pi R^2\)
Thus, the work done in the process is \( 8\pi R^2 T \).
The Correct Answer is:\( 8\pi R^2 T \)
Two soap bubbles of radius 2 cm and 4 cm, respectively, are in contact with each other. The radius of curvature of the common surface, in cm, is _______________.
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.