To find the work done in dividing a liquid drop into smaller drops, we need to consider the change in surface energy due to the change in total surface area.
Therefore, the work done in the process is \( 8\pi R^2 T \), which matches the correct answer given in the options.
Step 1. Volume Conservation:
Since the total volume of the liquid remains constant, we equate the volume of the original drop to the combined volume of the 27 smaller drops.
For the original drop:
\(\frac{4}{3}\pi R^3\)
For the 27 smaller drops (each of radius \( r \)):
\(27 \times \frac{4}{3}\pi r^3\)
Equating the volumes:
\(\frac{4}{3}\pi R^3 = 27 \times \frac{4}{3}\pi r^3\)
\(R^3 = 27r^3 \implies r = \frac{R}{3}\)
Step 2. Calculate the Surface Areas:
- Surface area of the original drop:
\(A_{\text{initial}} = 4\pi R^2\)
- Surface area of the 27 smaller drops:
\(A_{\text{final}} = 27 \times 4\pi r^2 = 27 \times 4\pi \left(\frac{R}{3}\right)^2 = 27 \times 4\pi \frac{R^2}{9} = 12\pi R^2\)
Step 3. Calculate the Work Done :
The work done in increasing the surface area is given by: \(\text{Work done} = T\Delta A = T(A_{\text{final}} - A_{\text{initial}})\)
\(= T(12\pi R^2 - 4\pi R^2) = T \times 8\pi R^2\)
Thus, the work done in the process is \( 8\pi R^2 T \).
The Correct Answer is:\( 8\pi R^2 T \)
Two liquids A and B have $\theta_{\mathrm{A}}$ and $\theta_{\mathrm{B}}$ as contact angles in a capillary tube. If $K=\cos \theta_{\mathrm{A}} / \cos \theta_{\mathrm{B}}$, then identify the correct statement:
Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals:
Designate whether each of the following compounds is aromatic or not aromatic.

The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)