A small bob of mass 100 mg and charge +10 µC is connected to an insulating string of length 1 m. It is brought near to an infinitely long non-conducting sheet of charge density \( \sigma \) as shown in figure. If the string subtends an angle of 45° with the sheet at equilibrium, the charge density of sheet will be :
From the diagram in the solution, we have the force acting on the charge due to the electric field of the sheet:
The force is given by: \[ F_e = qE = mg \] where \( q \) is the charge and \( E \) is the electric field due to the sheet. The electric field is related to the charge density \( \sigma \) as: \[ E = \frac{\sigma}{2 \epsilon_0} \] Thus, the equation becomes: \[ q \left( \frac{\sigma}{2 \epsilon_0} \right) = mg \] Rearranging to solve for \( \sigma \): \[ \sigma = \frac{2g m}{q} \] Substitute the known values: \[ \sigma = \frac{2 \times 8.85 \times 10^{-12} \times 100 \times 10^{-6} \times 10}{10 \times 10^{-6}} \] \[ \sigma = 17.7 \times 10^{-10} \text{ C/m}^2 \] \[ \sigma = 1.77 \text{ nC/cm}^2 \] Thus, the charge density of the sheet is \( 1.77 \) nC/cm\(^2\).
A point charge $ +q $ is placed at the origin. A second point charge $ +9q $ is placed at $ (d, 0, 0) $ in Cartesian coordinate system. The point in between them where the electric field vanishes is:
Consider two infinitely large plane parallel conducting plates as shown below. The plates are uniformly charged with a surface charge density \( +\sigma \) and \( -\sigma \). The force experienced by a point charge \( +q \) placed at the mid point between the plates will be:
A molecule with the formula $ \text{A} \text{X}_2 \text{Y}_2 $ has all it's elements from p-block. Element A is rarest, monotomic, non-radioactive from its group and has the lowest ionization energy value among X and Y. Elements X and Y have first and second highest electronegativity values respectively among all the known elements. The shape of the molecule is:
A transition metal (M) among Mn, Cr, Co, and Fe has the highest standard electrode potential $ M^{n}/M^{n+1} $. It forms a metal complex of the type $[M \text{CN}]^{n+}$. The number of electrons present in the $ e $-orbital of the complex is ... ...
Consider the following electrochemical cell at standard condition. $$ \text{Au(s) | QH}_2\text{ | QH}_X(0.01 M) \, \text{| Ag(1M) | Ag(s) } \, E_{\text{cell}} = +0.4V $$ The couple QH/Q represents quinhydrone electrode, the half cell reaction is given below: $$ \text{QH}_2 \rightarrow \text{Q} + 2e^- + 2H^+ \, E^\circ_{\text{QH}/\text{Q}} = +0.7V $$
0.1 mol of the following given antiviral compound (P) will weigh .........x $ 10^{-1} $ g.
Consider the following equilibrium, $$ \text{CO(g)} + \text{H}_2\text{(g)} \rightleftharpoons \text{CH}_3\text{OH(g)} $$ 0.1 mol of CO along with a catalyst is present in a 2 dm$^3$ flask maintained at 500 K. Hydrogen is introduced into the flask until the pressure is 5 bar and 0.04 mol of CH$_3$OH is formed. The $ K_p $ is ...... x $ 10^7 $ (nearest integer).
Given: $ R = 0.08 \, \text{dm}^3 \, \text{bar} \, \text{K}^{-1} \, \text{mol}^{-1} $
Assume only methanol is formed as the product and the system follows ideal gas behavior.