Step 1: Apply the formula for Coriolis acceleration.
The Coriolis acceleration is given by the formula:
\[
a_C = 2v \omega
\]
Where \( v \) is the velocity of the slider and \( \omega \) is the angular velocity of the rotating link.
Step 2: Convert the given values.
We are given \( v = 15 \, \text{m/s} \) and \( \omega = 30 \, \text{r.p.m.} = \frac{30 \times 2\pi}{60} \, \text{radians per second} = \pi \, \text{rad/s} \).
Step 3: Calculate the Coriolis acceleration.
Using the formula \( a_C = 2 \times 15 \times \pi = 30\pi \, \text{m/s}^2 \), the Coriolis acceleration is \( \frac{3\pi}{\text{m/s}^2} \).
Final Answer:
\[
\boxed{\frac{3\pi}{\text{m/s}^2}}
\]