Step 1: Kinetic Energy Formula
The change in kinetic energy (\( \Delta KE \)) of a rotating body is given by the formula:
\[
\Delta KE = \frac{1}{2} I (\omega_2^2 - \omega_1^2)
\]
where:
\( I \) is the moment of inertia,
\( \omega_1 \) and \( \omega_2 \) are the initial and final angular velocities, respectively.
Step 2: Substituting the Known Values
From the problem:
Initial angular velocity \( \omega_1 = 210 \, \text{rad/s} \),
Final angular velocity \( \omega_2 = 190 \, \text{rad/s} \),
Change in kinetic energy \( \Delta KE = 400 \, \text{N-m} \).
Substituting into the kinetic energy formula:
\[
400 = \frac{1}{2} I \left( (190)^2 - (210)^2 \right)
\]
Step 3: Simplifying the Expression
First, calculate the difference of the squares:
\[
(190)^2 - (210)^2 = (190 - 210)(190 + 210) = (-20)(400) = -8000
\]
Thus, the equation becomes:
\[
400 = \frac{1}{2} I (-8000)
\]
\[
400 = -4000 I
\]
\[
I = \frac{400}{4000} = 0.10 \, \text{kg-m}^2
\]
Step 4: Conclusion
So, the moment of inertia of the flywheel is \( \boxed{0.10} \, \text{kg-m}^2 \).