Step 1: Write Orowan's equation.
The relation between shear strain rate, dislocation density, Burgers vector and dislocation velocity is:
\[
\dot{\gamma} = \rho \, b \, v
\]
where $\dot{\gamma}$ = shear strain rate, $\rho$ = mobile dislocation density, $b$ = Burgers vector magnitude, $v$ = dislocation velocity.
Step 2: Calculate Burgers vector.
For BCC:
\[
b = \frac{a}{2}\sqrt{1^2 + 1^2 + 1^2} = \frac{a}{2}\sqrt{3}
\]
Given $a = 0.4$ nm = $0.4 \times 10^{-9}$ m.
\[
b = \frac{0.4 \times 10^{-9}}{2} \sqrt{3} = 0.2 \times 10^{-9} \times 1.732
\]
\[
b = 0.346 \times 10^{-9} \, m
\]
Step 3: Rearrange Orowan's equation.
\[
v = \frac{\dot{\gamma}}{\rho b}
\]
Step 4: Substitute values.
\[
v = \frac{0.001}{10^{10} \times 0.346 \times 10^{-9}}
\]
\[
v = \frac{0.001}{3.46}
\]
\[
v = 2.89 \times 10^{-4} \, m s^{-1}
\]
Now, express as ×10$^{-3}$:
\[
v = 0.289 \times 10^{-3} \, m s^{-1}
\]
But wait – let's recheck carefully:
\[
10^{10} \times 0.346 \times 10^{-9} = 3.46
\]
\[
0.001 / 3.46 = 2.89 \times 10^{-4}
\]
So final value:
\[
\boxed{0.29 \times 10^{-3} \, m s^{-1}}
\]