Step 1: Understanding free surface effect.
The free surface effect depends on the second moment of area (moment of inertia) of the tank's free surface. \[ I = \frac{b^3 l}{12} \] where \( b \) is the breadth of the tank (transverse dimension), and \( l \) is the length.
Step 2: Compare Tank A and Tank B.
Tank A: \( b = 16 \, {m} \), \( l = 12 \, {m} \) \[ I_A = \frac{16^3 \cdot 12}{12} = 4096 \] Tank B: \( b = 12 \, {m} \), \( l = 16 \, {m} \) \[ I_B = \frac{12^3 \cdot 16}{12} = 2304 \] Step 3: Select the tank with smaller free surface moment.
Since \( I_B<I_A \), Tank B contributes less to the free surface effect. Hence, filling 100% of the ballast water in Tank B is the best option.
A ship of 3300 tonne displacement is undergoing an inclining experiment in seawater of density 1025 kg/m\(^3\). A mass of 6 tonne is displaced transversely by 12 m as shown in the figure. This results in a 0.12 m deflection of a 11 m long pendulum suspended from the centerline. The transverse metacenter of the ship is located at 7.25 m above the keel.
The distance of the center of gravity from the keel is ________ m (rounded off to two decimal places).
A multi-cell midship section of a ship with \( B = 40 \, {m} \) and \( D = 20 \, {m} \) is shown in the figure. The shear-flows are given as \( q_1 = q_2 = q_3 = 0.9376 \, {MN/m} \). The applied twisting moment on the midship section is ___________ MN·m (rounded off to two decimal places).
Consider a case where the load \( Q \) for a ship structure has only statistical uncertainties. The probability density function of the load \( p_Q(x) \) is shown in the figure. The characteristic limit value of the load \( Q_L \) is 1.5 and the factor of safety is 1. Which of the following probability of exceedance value(s) of the load will lead to a safe design?
Bird : Nest :: Bee : __________
Select the correct option to complete the analogy.
A closed system is undergoing a reversible process 1–P–2 from state 1 to 2, as shown in the figure, where X and Y are thermodynamic properties. An irreversible process 2–Q–1 brings the system back from 2 to 1. The net change in entropy of the system and surroundings during the above-mentioned cycle are _______ respectively.
Consider a weightless, frictionless piston with a 2 kg mass placed on it as shown in the figure. At equilibrium in position 1, the cylinder contains 0.1 kg of air. The piston cross-sectional area is 0.01 m2. The ambient pressure in the surroundings outside the piston-cylinder arrangement is 0 bar (absolute). When the mass above the piston is removed instantaneously, it moves up and hits the stop at position 2, which is 0.1 m above the initial position.
Assuming \( g = 9.81 \, {m/s}^2 \), the thermodynamic work done by the system during this process is ________ J (answer in integer).