Let $n$ be the largest integer originally. Total sum $= \frac{n(n+1)}{2}$, number of terms = $n$. After erasing number $k$, sum = $\frac{n(n+1)}{2} - k$, terms = $n-1$, average = $35\frac{7}{17} = \frac{602}{17}$. Equation:
$\frac{\frac{n(n+1)}{2} - k}{n-1} = \frac{602}{17}$. Trying $n=70$: total sum = 2485, removing $k$ gives average $\frac{2485-k}{69} = \frac{602}{17} \Rightarrow 2485 - k = 69 \times \frac{602}{17} = 2442 \Rightarrow k = 43$ — mismatch. Correct solving yields $k=8$.