Let $S_1 = a, b, c, d, e$.
Given $c = \frac{a}{2}$ and $e = a + 20$.
Series $S_2$ = $b-a$, $c-b$, $d-c$, $e-d$ is an AP with common difference 30.
Let first term of $S_2$ = $p = b-a$. Then $c-b = p + 30$.
But $c = a/2$, so $a/2 - b = p + 30$. Substituting $b = a + p$:
$a/2 - (a + p) = p + 30 \Rightarrow a/2 - a - p = p + 30 \Rightarrow -a/2 - p = p + 30 \Rightarrow -a/2 = 2p + 30$.
Similarly, $e-d = p + 90$ and $e = a+20$, $d = c + (p+60) = a/2 + p + 60$.
$e - d = a+20 - (a/2 + p + 60) = a/2 - p - 40 = p + 90 \Rightarrow a/2 - p - 40 = p + 90 \Rightarrow a/2 = 2p + 130$.
Equating $a/2 = -2p - 30$ and $a/2 = 2p + 130$:
$-2p - 30 = 2p + 130 \Rightarrow -4p = 160 \Rightarrow p = -40$.
Then $a/2 = -2(-40) - 30 = 80 - 30 = 50 \Rightarrow a = 100$.