Step 1: Formula for the quality factor \( Q \).
The quality factor \( Q \) for a series RLC circuit is given by the formula:
\[
Q = \frac{1}{R} \sqrt{\frac{L}{C}}
\]
where \( L \) is the inductance, \( R \) is the resistance, and \( C \) is the capacitance. At resonance, the angular frequency \( \omega_0 \) is related to \( L \) and \( C \) by:
\[
\omega_0 = \frac{1}{\sqrt{LC}}
\]
Therefore, \( C \) can be expressed as:
\[
C = \frac{1}{L \omega_0^2}
\]
Step 2: Quality factor formula using \( \omega_0 \).
Substitute the expression for \( C \) into the equation for \( Q \):
\[
Q = \frac{\omega_0 L}{R}
\]
Step 3: Apply the given values.
We are given:
\( L = 20 \, {mH} = 20 \times 10^{-3} \, {H} \),
\( R = 10 \, \Omega \),
\( \omega_0 = 7500 \, {rad/s} \).
Thus, the quality factor \( Q \) is:
\[
Q = \frac{7500 \times 20 \times 10^{-3}}{10} = \frac{150}{10} = 15
\]
Step 4: Calculate the uncertainty in \( Q \).
The uncertainty in the quality factor is found by using the propagation of uncertainties for the formula \( Q = \frac{\omega_0 L}{R} \):
\[
\left( \frac{\Delta Q}{Q} \right)^2 = \left( \frac{\Delta L}{L} \right)^2 + \left( \frac{\Delta R}{R} \right)^2
\]
where \( \Delta L = 0.8 \, {mH} = 0.8 \times 10^{-3} \, {H} \) and \( \Delta R = 0.3 \, \Omega \).
Substitute the given values into the uncertainty formula:
\[
\frac{\Delta Q}{Q} = \sqrt{\left( \frac{0.8 \times 10^{-3}}{20 \times 10^{-3}} \right)^2 + \left( \frac{0.3}{10} \right)^2}
\]
\[
\frac{\Delta Q}{Q} = \sqrt{\left( 0.04 \right)^2 + \left( 0.03 \right)^2}
\]
\[
\frac{\Delta Q}{Q} = \sqrt{0.0016 + 0.0009} = \sqrt{0.0025} = 0.05
\]
Step 5: Calculate the percentage uncertainty.
The percentage uncertainty in \( Q \) is:
\[
% \, \Delta Q = 0.05 \times 100 = 5%
\]
Step 6: Final Answer.
Thus, the percentage uncertainty in the measurement of the quality factor is:
\[
\boxed{5%}
\]