Given:
- Time period of the satellite around the planet: \( T_1 = 6 \, \text{hours} \)
- Time period of a geo-stationary satellite around Earth: \( T_2 = 24 \, \text{hours} \)
- Radius of geo-stationary orbit around Earth: \( r_2 = 4.2 \times 10^4 \, \text{km} \)
- Mass of the planet: \( M_1 = \frac{M}{4} \) (where \( M \) is the mass of the Earth)
Step 1: Using the Time Period Relation for Circular Orbits
The formula for the time period of a satellite in orbit is given by:
\[ T = 2\pi \sqrt{\frac{r^3}{GM}}. \]
Taking the ratio of the time periods for the satellite and Earth's geo-stationary satellite:
\[ \frac{T_1}{T_2} = \left( \frac{r_1}{r_2} \right)^{3/2} \left( \frac{M_2}{M_1} \right)^{1/2}, \]
where:
- \( r_1 \) and \( r_2 \) are the radii of the orbits,
- \( M_1 \) and \( M_2 \) are the masses of the respective planets.
Step 2: Substituting the Given Values
Substituting the given values:
\[ \frac{6}{24} = \left( \frac{r_1}{4.2 \times 10^4} \right)^{3/2} \left( \frac{M}{M/4} \right)^{1/2}. \]
Simplifying:
\[ \frac{1}{4} = \left( \frac{r_1}{4.2 \times 10^4} \right)^{3/2} \times 2. \]
Dividing both sides by 2:
\[ \frac{1}{8} = \left( \frac{r_1}{4.2 \times 10^4} \right)^{3/2}. \]
Taking the cube root:
\[ \left( \frac{r_1}{4.2 \times 10^4} \right) = \left( \frac{1}{8} \right)^{2/3} \approx 0.25. \]
Thus:
\[ r_1 \approx 0.25 \times 4.2 \times 10^4 = 1.05 \times 10^4 \, \text{km}. \]
Therefore, the radius of the orbit of the planet is \( 1.05 \times 10^4 \, \text{km} \).
Two vessels A and B are connected via stopcock. Vessel A is filled with a gas at a certain pressure. The entire assembly is immersed in water and allowed to come to thermal equilibrium with water. After opening the stopcock the gas from vessel A expands into vessel B and no change in temperature is observed in the thermometer. Which of the following statement is true?
Choose the correct nuclear process from the below options:
\( [ p : \text{proton}, n : \text{neutron}, e^- : \text{electron}, e^+ : \text{positron}, \nu : \text{neutrino}, \bar{\nu} : \text{antineutrino} ] \)
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: