Given:
- Time period of the satellite around the planet: \( T_1 = 6 \, \text{hours} \)
- Time period of a geo-stationary satellite around Earth: \( T_2 = 24 \, \text{hours} \)
- Radius of geo-stationary orbit around Earth: \( r_2 = 4.2 \times 10^4 \, \text{km} \)
- Mass of the planet: \( M_1 = \frac{M}{4} \) (where \( M \) is the mass of the Earth)
Step 1: Using the Time Period Relation for Circular Orbits
The formula for the time period of a satellite in orbit is given by:
\[ T = 2\pi \sqrt{\frac{r^3}{GM}}. \]
Taking the ratio of the time periods for the satellite and Earth's geo-stationary satellite:
\[ \frac{T_1}{T_2} = \left( \frac{r_1}{r_2} \right)^{3/2} \left( \frac{M_2}{M_1} \right)^{1/2}, \]
where:
- \( r_1 \) and \( r_2 \) are the radii of the orbits,
- \( M_1 \) and \( M_2 \) are the masses of the respective planets.
Step 2: Substituting the Given Values
Substituting the given values:
\[ \frac{6}{24} = \left( \frac{r_1}{4.2 \times 10^4} \right)^{3/2} \left( \frac{M}{M/4} \right)^{1/2}. \]
Simplifying:
\[ \frac{1}{4} = \left( \frac{r_1}{4.2 \times 10^4} \right)^{3/2} \times 2. \]
Dividing both sides by 2:
\[ \frac{1}{8} = \left( \frac{r_1}{4.2 \times 10^4} \right)^{3/2}. \]
Taking the cube root:
\[ \left( \frac{r_1}{4.2 \times 10^4} \right) = \left( \frac{1}{8} \right)^{2/3} \approx 0.25. \]
Thus:
\[ r_1 \approx 0.25 \times 4.2 \times 10^4 = 1.05 \times 10^4 \, \text{km}. \]
Therefore, the radius of the orbit of the planet is \( 1.05 \times 10^4 \, \text{km} \).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).