Step 1: Use Charles's Law.
Charles's law: \(\frac{V_1}{T_1} = \frac{V_2}{T_2}\), where temperature is in Kelvin.
Step 2: Convert Celsius to Kelvin.
\[ T_1 = 27^\circ C = 300\, K, \quad T_2 = 127^\circ C = 400\, K \]
Step 3: Apply Charles's Law.
\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \Rightarrow \frac{4.0}{300} = \frac{V_2}{400} \Rightarrow V_2 = \frac{4.0 \times 400}{300} = \frac{1600}{300} = 5.\overline{3}\, \text{L} \]
So, the final volume is approximately 5.33 L.