First-Order Reaction Time Calculation
For a first-order reaction, the time \( t \) is given by:
\[ t = \frac{2.303}{k} \log \left( \frac{[A]_0}{[A]_t} \right) \]
Given:
\[ \frac{[m]_{\text{Pb}}}{[m]_{\text{U}}} = 7 \quad \Rightarrow \quad \frac{[A]_0}{[A]_t} = 1 + 7 \times \frac{1}{238 + 206} \approx 9 \]
Half-life of U-238:
The half-life \( t_{1/2} \) of U-238 is: \[ t_{1/2} = 4.5 \times 10^9 \quad \text{so} \quad k = \frac{0.693}{t_{1/2}} = \frac{0.693}{4.5 \times 10^9} \]
Substituting values into the equation:
\[ t = \frac{2.303}{k} \log 9 = \frac{2.303 \times 4.5 \times 10^9}{0.693} \log 9 \]
Simplifying:
\[ t \approx 14.27 \times 10^9 = 1.43 \times 10^{10} \quad \Rightarrow \quad P = 143 \]
Final Answer:
The value of P is 143.
To solve the problem, we need to find the age of the sample \( t = P \times 10^{8} \) years when the mass ratio of Pb-206 to U-238 is 7, with the range of \( P \) given as 135 to 151.
1. Radioactive decay relation:
Initial mass of U-238 = \( M_0 \).
Mass of U-238 remaining after time \( t \):
\[
M = M_0 e^{-\lambda t}
\]
Mass of Pb-206 formed:
\[
M_{\text{Pb}} = M_0 - M = M_0 (1 - e^{-\lambda t})
\]
2. Given mass ratio:
\[
\frac{M_{\text{Pb}}}{M} = 7
\]
Substitute:
\[
\frac{1 - e^{-\lambda t}}{e^{-\lambda t}} = 7 \implies 1 - e^{-\lambda t} = 7 e^{-\lambda t} \implies 1 = 8 e^{-\lambda t}
\]
\[
e^{-\lambda t} = \frac{1}{8}
\]
Taking natural logarithm:
\[
-\lambda t = \ln \frac{1}{8} = -\ln 8 \implies \lambda t = \ln 8
\]
3. Decay constant \( \lambda \):
Given half-life:
\[
T_{1/2} = 4.5 \times 10^{9} \, \text{years}, \quad \ln 2 = 0.693
\]
\[
\lambda = \frac{\ln 2}{T_{1/2}} = \frac{0.693}{4.5 \times 10^{9}} \approx 1.54 \times 10^{-10} \, \text{yr}^{-1}
\]
4. Calculate time \( t \):
\[
\lambda t = \ln 8 = \ln (2^3) = 3 \ln 2 = 3 \times 0.693 = 2.079
\]
\[
t = \frac{2.079}{\lambda} = \frac{2.079}{1.54 \times 10^{-10}} \approx 1.35 \times 10^{10} \, \text{years}
\]
5. Express \( t \) in the form \( P \times 10^{8} \) years:
\[
t = 1.35 \times 10^{10} = 135 \times 10^{8}
\]
So the lower limit \( P = 135 \).
6. Upper limit check for \( P = 151 \):
Calculate \( t = 151 \times 10^{8} = 1.51 \times 10^{10} \) years
\[
\lambda t = 1.54 \times 10^{-10} \times 1.51 \times 10^{10} = 2.325
\]
\[
e^{\lambda t} = e^{2.325} \approx 10.23
\]
Mass ratio:
\[
\frac{M_{\text{Pb}}}{M} = e^{\lambda t} - 1 = 10.23 - 1 = 9.23
\]
This indicates that at \( P = 151 \), the ratio would be approximately 9.23, which is a bit higher than 7.
Summary:
The value of \( P \) corresponding to a mass ratio of 7 lies approximately between 135 and 151, as given.
Final Answer:
The value of \( P \) is in the range \(\boxed{135 \text{ to } 151}\).
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is