The root mean square speed (\(V_{\text{rms}}\)) is given by:
\[ V_{\text{rms}} = \sqrt{\frac{3RT}{M_w}} \]
where \(M_w\) is the molar mass of the gas.
The ratio of root mean square speeds of helium (\(V_{\text{He}}\)) and oxygen (\(V_{\text{O}_2}\)) is:
\[ \frac{V_{\text{O}_2}}{V_{\text{He}}} = \sqrt{\frac{M_{w,\text{He}}}{M_{w,\text{O}_2}}} \]
Substituting the values:
\[ \frac{V_{\text{O}_2}}{V_{\text{He}}} = \sqrt{\frac{4}{32}} = \frac{1}{2\sqrt{2}} \]
The ratio \(V_{\text{He}} / V_{\text{O}_2}\) is:
\[ \frac{V_{\text{He}}}{V_{\text{O}_2}} = \frac{2\sqrt{2}}{1} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: