Given:
The angular velocity of a rigid body varies with time as:
\[
\omega(t) = \alpha - \beta t
\]
Where \( \alpha, \beta \) are positive constants.
Objective:
Find the total angular displacement (angle rotated) before the body comes to rest.
Step 1: Find the time when the body stops rotating
The body stops when angular velocity becomes zero:
\[
\omega = \alpha - \beta t = 0 \Rightarrow t = \frac{\alpha}{\beta}
\]
Step 2: Use integration to find angular displacement
Angular displacement \( \theta \) is given by:
\[
\theta = \int_0^{t} \omega(t)\, dt = \int_0^{\alpha/\beta} (\alpha - \beta t)\, dt
\]
Now integrate:
\[
\theta = \left[ \alpha t - \frac{\beta t^2}{2} \right]_0^{\alpha/\beta}
= \alpha \cdot \frac{\alpha}{\beta} - \frac{\beta}{2} \cdot \left( \frac{\alpha^2}{\beta^2} \right)
= \frac{\alpha^2}{\beta} - \frac{\alpha^2}{2\beta}
= \frac{\alpha^2}{2\beta}
\]
Final Answer:
The angle through which the body rotates before it stops is:
\[
\boxed{\frac{\alpha^2}{2\beta}}
\]