A parallel plate capacitor consists of two circular plates of radius \( R = 0.1 \) m. They are separated by a short distance. If the electric field between the capacitor plates changes as:
\[
\frac{dE}{dt} = 6 \times 10^{13} \frac{V}{m \cdot s}
\]
then the value of the displacement current is:
Show Hint
Displacement current plays a crucial role in Maxwell's equations, bridging the gap between capacitors in AC circuits.
Step 1: {Using Maxwell's Displacement Current Formula}
The displacement current is given by:
\[
I_d = \varepsilon_0 \frac{d\Phi}{dt}
\]
Since:
\[
\frac{d\Phi}{dt} = A \frac{dE}{dt}
\]
Step 2: {Finding the Area of Plates}
\[
A = \pi R^2 = 3.14 \times (0.1)^2 = 3.14 \times 10^{-2} { m}^2
\]
Step 3: {Calculating Displacement Current}
\[
I_d = \varepsilon_0 A \frac{dE}{dt}
\]
\[
= (8.85 \times 10^{-12}) \times (3.14 \times 10^{-2}) \times (6 \times 10^{13})
\]
\[
I_d = 16.67 { A}
\]
Thus, the correct answer is \( 16.67 \) A.
Was this answer helpful?
0
0
Hide Solution
Verified By Collegedunia
Approach Solution -2
Step 1: Understand displacement current
Displacement current \( I_d \) is given by Maxwell’s extension to Ampere’s Law:
\[
I_d = \varepsilon_0 \cdot \frac{d\Phi_E}{dt}
\]
Where \( \Phi_E \) is the electric flux:
\[
\Phi_E = E \cdot A
\]
So,
\[
\frac{d\Phi_E}{dt} = A \cdot \frac{dE}{dt}
\]
Thus,
\[
I_d = \varepsilon_0 \cdot A \cdot \frac{dE}{dt}
\]
Step 2: Use the given values
- Radius \( R = 0.1 \) m
- Area \( A = \pi R^2 = \pi (0.1)^2 = 0.01\pi \) m²
- \( \frac{dE}{dt} = 6 \times 10^{13} \) V/m·s
- \( \varepsilon_0 = 8.85 \times 10^{-12} \) F/m