Step 1: Understand displacement current
Displacement current \( I_d \) is given by Maxwell’s extension to Ampere’s Law:
\[
I_d = \varepsilon_0 \cdot \frac{d\Phi_E}{dt}
\]
Where \( \Phi_E \) is the electric flux:
\[
\Phi_E = E \cdot A
\]
So,
\[
\frac{d\Phi_E}{dt} = A \cdot \frac{dE}{dt}
\]
Thus,
\[
I_d = \varepsilon_0 \cdot A \cdot \frac{dE}{dt}
\]
Step 2: Use the given values
- Radius \( R = 0.1 \) m
- Area \( A = \pi R^2 = \pi (0.1)^2 = 0.01\pi \) m²
- \( \frac{dE}{dt} = 6 \times 10^{13} \) V/m·s
- \( \varepsilon_0 = 8.85 \times 10^{-12} \) F/m
Step 3: Plug into the formula
\[
I_d = 8.85 \times 10^{-12} \cdot 0.01\pi \cdot 6 \times 10^{13}
\]
\[
I_d = 8.85 \cdot 0.01 \cdot \pi \cdot 6 \times 10^{1}
\]
\[
I_d \approx 8.85 \cdot 0.01 \cdot 3.1416 \cdot 60
\]
\[
I_d \approx (8.85 \cdot 0.01 \cdot 188.496) \approx 16.67 \text{ A}
\]
Step 4: Final Answer
The displacement current is:
16.67 A