Step 1: Reflexivity: For reflexivity, we need \( (a, b) \, R \, (a, b) \), i.e., \( ad = bc \). Clearly, \( a \cdot b = b \cdot a \), so \( R \) is reflexive.
Step 2: Symmetry: For symmetry, we need that if \( (a, b) \, R \, (c, d) \), i.e., \( ad = bc \), then \( (c, d) \, R \, (a, b) \). Since \( ad = bc \), we have \( bc = ad \), thus symmetry holds.
Step 3: Transitivity: For transitivity, if \( (a, b) \, R \, (c, d) \) and \( (c, d) \, R \, (e, f) \), then we need \( (a, b) \, R \, (e, f) \). From \( ad = bc \) and \( cf = de \), we get \( ad \cdot cf = bc \cdot de \), confirming that transitivity holds.
Let $ A = \{0, 1, 2, 3, 4, 5, 6\} $ and $ R_1 = \{(x, y): \max(x, y) \in \{3, 4 \}$. Consider the two statements:
Statement 1: Total number of elements in $ R_1 $ is 18.
Statement 2: $ R $ is symmetric but not reflexive and transitive.
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $