Step 1: Reflexivity: For reflexivity, we need \( (a, b) \, R \, (a, b) \), i.e., \( ad = bc \). Clearly, \( a \cdot b = b \cdot a \), so \( R \) is reflexive.
Step 2: Symmetry: For symmetry, we need that if \( (a, b) \, R \, (c, d) \), i.e., \( ad = bc \), then \( (c, d) \, R \, (a, b) \). Since \( ad = bc \), we have \( bc = ad \), thus symmetry holds.
Step 3: Transitivity: For transitivity, if \( (a, b) \, R \, (c, d) \) and \( (c, d) \, R \, (e, f) \), then we need \( (a, b) \, R \, (e, f) \). From \( ad = bc \) and \( cf = de \), we get \( ad \cdot cf = bc \cdot de \), confirming that transitivity holds.
Suppose that \( A = \{ 1, 2, 3 \} \), \( B = \{ 4, 5, 6, 7 \} \), and \( f = \{ (1, 4), (2, 5), (3, 6) \} \) be a function from \( A \) to \( B \). Then \( f \) is:
State Gauss's Law in electrostatics. Using it (i) find electric field due to a point source charge \( q \) and (ii) deduce Coulomb's law between source charge \( q \) and test charge \( q_0 \).
Compare features of p-type and n-type semiconductors. Draw circuit diagram of half-wave rectifier of p-n junction diode and explain it.
What is atomic model of magnetism? Differentiate between paramagnetic, diamagnetic, and ferromagnetic substances on this basis. Also, give one example of each.