Step 1: Reflexivity: For reflexivity, we need \( (a, b) \, R \, (a, b) \), i.e., \( ad = bc \). Clearly, \( a \cdot b = b \cdot a \), so \( R \) is reflexive.
Step 2: Symmetry: For symmetry, we need that if \( (a, b) \, R \, (c, d) \), i.e., \( ad = bc \), then \( (c, d) \, R \, (a, b) \). Since \( ad = bc \), we have \( bc = ad \), thus symmetry holds.
Step 3: Transitivity: For transitivity, if \( (a, b) \, R \, (c, d) \) and \( (c, d) \, R \, (e, f) \), then we need \( (a, b) \, R \, (e, f) \). From \( ad = bc \) and \( cf = de \), we get \( ad \cdot cf = bc \cdot de \), confirming that transitivity holds.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]