Given that \( Y = \sum_{i=1}^{300} X_i \), where \( X_i \sim \text{Bernoulli}(0.25) \), we approximate the distribution of \( Y \) using the Central Limit Theorem. The mean and variance of \( Y \) are: \[ \mu_Y = 300 \times 0.25 = 75, \quad \sigma_Y^2 = 300 \times 0.25 \times 0.75 = 56.25, \quad \sigma_Y = 7.5 \] The probability \( P(60 \leq Y \leq 90) \) is approximated by: \[ P\left( \frac{60 - 75}{7.5} \leq Z \leq \frac{90 - 75}{7.5} \right) = P(-2 \leq Z \leq 2) \] Using the cumulative distribution function \( \phi(x) \) of the standard normal distribution: \[ P(-2 \leq Z \leq 2) = \phi(2) - \phi(-2) \] Thus, the value of \( P(60 \leq Y \leq 90) \) is \( \phi(2) - \phi(-2) \).
Correct Answer: (A) \( \phi(2) - \phi(-2) \).