We are given the integral:
I=∫ex1+cos2x2+sin2xdx.
Step 1: Simplify the expression inside the integral.
Recall the trigonometric identity:
1+cos2x=2cos2x.
Substitute this into the denominator:
I=∫ex2cos2x2+sin2xdx.
Next, separate the terms:
I=∫ex2cos2x2dx+∫ex2cos2xsin2xdx.
Simplify the fractions:
I=∫exsec2xdx+∫extanxsecxdx.
Step 2: Evaluate each integral.
For the first term:
∫exsec2xdx,
we use the standard result:
∫exsec2xdx=extanx+C1.
For the second term:
∫extanxsecxdx,
we apply the known formula:
∫extanxsecxdx=extanx+C2.
Step 3: Combine the results.
Adding both terms together:
I=extanx+C.
Final Answer:
extanx+C