Question:

The integral ex2+sin2x1+cos2xdx \int e^x \frac{2 + \sin 2x}{1 + \cos 2x} \, dx is equal to

Show Hint

When dealing with integrals involving trigonometric functions, it’s useful to apply identities to simplify the integrand before attempting the integration.
Updated On: Mar 29, 2025
  • exsecx+C e^x \sec x + C
  • extanx+C e^x \tan x + C
  • excotx+C e^x \cot x + C
  • excscx+C e^x \csc x + C
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are given the integral: I=ex2+sin2x1+cos2xdx. I = \int e^x \frac{2 + \sin 2x}{1 + \cos 2x} \, dx. Step 1: Simplify the expression inside the integral. Recall the trigonometric identity: 1+cos2x=2cos2x. 1 + \cos 2x = 2\cos^2 x. Substitute this into the denominator: I=ex2+sin2x2cos2xdx. I = \int e^x \frac{2 + \sin 2x}{2\cos^2 x} \, dx. Next, separate the terms: I=ex22cos2xdx+exsin2x2cos2xdx. I = \int e^x \frac{2}{2\cos^2 x} \, dx + \int e^x \frac{\sin 2x}{2\cos^2 x} \, dx. Simplify the fractions: I=exsec2xdx+extanxsecxdx. I = \int e^x \sec^2 x \, dx + \int e^x \tan x \sec x \, dx. Step 2: Evaluate each integral. For the first term: exsec2xdx, \int e^x \sec^2 x \, dx, we use the standard result: exsec2xdx=extanx+C1. \int e^x \sec^2 x \, dx = e^x \tan x + C_1. For the second term: extanxsecxdx, \int e^x \tan x \sec x \, dx, we apply the known formula: extanxsecxdx=extanx+C2. \int e^x \tan x \sec x \, dx = e^x \tan x + C_2. Step 3: Combine the results. Adding both terms together: I=extanx+C. I = e^x \tan x + C. Final Answer: extanx+C \boxed{e^x \tan x + C}
Was this answer helpful?
0
0