The integral \( \int e^x \frac{2 + \sin 2x}{1 + \cos 2x} \, dx \) is equal to
Show Hint
When dealing with integrals involving trigonometric functions, it’s useful to apply identities to simplify the integrand before attempting the integration.
We are given the integral:
\[
I = \int e^x \frac{2 + \sin 2x}{1 + \cos 2x} \, dx.
\]
Step 1: Simplify the expression inside the integral.
Recall the trigonometric identity:
\[
1 + \cos 2x = 2\cos^2 x.
\]
Substitute this into the denominator:
\[
I = \int e^x \frac{2 + \sin 2x}{2\cos^2 x} \, dx.
\]
Next, separate the terms:
\[
I = \int e^x \frac{2}{2\cos^2 x} \, dx + \int e^x \frac{\sin 2x}{2\cos^2 x} \, dx.
\]
Simplify the fractions:
\[
I = \int e^x \sec^2 x \, dx + \int e^x \tan x \sec x \, dx.
\]
Step 2: Evaluate each integral.
For the first term:
\[
\int e^x \sec^2 x \, dx,
\]
we use the standard result:
\[
\int e^x \sec^2 x \, dx = e^x \tan x + C_1.
\]
For the second term:
\[
\int e^x \tan x \sec x \, dx,
\]
we apply the known formula:
\[
\int e^x \tan x \sec x \, dx = e^x \tan x + C_2.
\]
Step 3: Combine the results.
Adding both terms together:
\[
I = e^x \tan x + C.
\]
Final Answer:
\[
\boxed{e^x \tan x + C}
\]