Let's denote the filling capacity of the pump as \( x \) m3 per minute. Therefore, the emptying capacity of the pump will be \( (x + 10) \) m3 per minute. The tank has a capacity of 2400 m3.
If it takes \( t \) minutes to fill the tank, then:
\[ x \times t = 2400 \]
\[ t = \frac{2400}{x} \]
For emptying the tank, it takes \( t - 8 \) minutes, so:
\[ (x + 10) \times (t - 8) = 2400 \]
Substitute \( t = \frac{2400}{x} \) into the emptying equation:
\[ (x + 10) \left(\frac{2400}{x} - 8\right) = 2400 \]
Expand and simplify:
\[ (x + 10) \left(\frac{2400 - 8x}{x}\right) = 2400 \]
\[ 2400(x + 10) - 8x(x + 10) = 2400x \]
Simplify further:
\[ 2400x + 24000 - 8x2 - 80x = 2400x \]
Cancel out \( 2400x \) from both sides:
\[ 24000 - 80x - 8x2 = 0 \]
Rearrange terms:
\[ 8x2 + 80x - 24000 = 0 \]
Divide the entire equation by 8 for simplicity:
\[ x2 + 10x - 3000 = 0 \]
We solve this quadratic equation using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1, b = 10, c = -3000 \):
\[ x = \frac{-10 \pm \sqrt{10^2 - 4 \times 1 \times (-3000)}}{2 \times 1} \]
\[ x = \frac{-10 \pm \sqrt{100 + 12000}}{2} \]
\[ x = \frac{-10 \pm \sqrt{12100}}{2} \]
\[ x = \frac{-10 \pm 110}{2} \]
Solving the quadratic formula gives us two potential solutions:
- \( x = \frac{100}{2} = 50 \)
- \( x = \frac{-120}{2} = -60 \)
Since a negative capacity doesn't make sense in this context, the filling capacity must be:
50 m3 / min