To solve this problem, we need to use Heisenberg's uncertainty principle, which is given by the relation:
\[
\Delta x \Delta p \geq \frac{\hbar}{2}
\]
where:
- \(\Delta x\) is the uncertainty in position,
- \(\Delta p\) is the uncertainty in momentum,
- \(\hbar\) is the reduced Planck's constant, \( \hbar = 1.0545718 \times 10^{-34} \, \text{J s}\).
The uncertainty in momentum \(\Delta p\) can be written as:
\[
\Delta p = m \Delta v
\]
where:
- \(m = 1.66 \times 10^{-27} \, \text{kg}\) (mass of the proton),
- \(\Delta v = 2% \, \text{of the velocity of the proton}\).
The velocity of the proton is given as \(v = \frac{c}{10}\), where \(c = 3.0 \times 10^8 \, \text{m/s}\). Therefore:
\[
v = 3.0 \times 10^7 \, \text{m/s}
\]
Now, the uncertainty in velocity \(\Delta v\) is:
\[
\Delta v = 0.02 \times v = 0.02 \times 3.0 \times 10^7 = 6.0 \times 10^5 \, \text{m/s}
\]
Now, calculate the uncertainty in momentum \(\Delta p\):
\[
\Delta p = m \Delta v = (1.66 \times 10^{-27}) \times (6.0 \times 10^5) = 9.96 \times 10^{-22} \, \text{kg m/s}
\]
Using the uncertainty principle:
\[
\Delta x \geq \frac{\hbar}{2 \Delta p}
\]
Substitute the known values:
\[
\Delta x \geq \frac{1.0545718 \times 10^{-34}}{2 \times 9.96 \times 10^{-22}} = 5.29 \times 10^{-14} \, \text{m}
\]
Therefore, the uncertainty in the position is \(5.29 \times 10^{-14} \, \text{m}\).