Given:
- Initial speed \( u = 40 \) m/s
- Angle of projection = \( \theta \)
- Range = \( R \)
- After time \( t \), the projectile's inclination with the horizontal becomes zero (i.e., vertical velocity = 0)
- Take \( g = 10 \, \text{m/s}^2 \)
Step 1: Understand the condition
The condition that the inclination with the horizontal becomes zero after time \( t \) implies:
- The **vertical component of velocity** becomes zero at that time
- So, the projectile is at **maximum height** at time \( t \)
Time to reach maximum height is:
\[
t = \frac{u \sin \theta}{g}
\Rightarrow \sin \theta = \frac{g t}{u}
= \frac{10t}{40} = \frac{t}{4}
\]
Step 2: Use range formula
The range \( R \) is given by:
\[
R = \frac{u^2 \sin 2\theta}{g}
\]
Use identity: \( \sin 2\theta = 2 \sin \theta \cos \theta \)
\[
R = \frac{u^2 \cdot 2 \sin \theta \cos \theta}{g}
= \frac{2u^2 \sin \theta \cos \theta}{g}
\]
Substitute \( \sin \theta = \frac{t}{4} \):
\[
R = \frac{2u^2}{g} \cdot \frac{t}{4} \cdot \cos \theta
\Rightarrow R = \frac{2 \cdot 1600}{10} \cdot \frac{t}{4} \cdot \cos \theta
= 320 \cdot \frac{t}{4} \cdot \cos \theta = 80t \cos \theta
\]
Step 3: Express \( \cot \theta \)
We know \( \cot \theta = \frac{\cos \theta}{\sin \theta} \)
From earlier, \( \sin \theta = \frac{t}{4} \), and we now have \( \cos \theta = \frac{R}{80t} \)
So:
\[
\cot \theta = \frac{R}{80t} \div \frac{t}{4} = \frac{R}{80t} \cdot \frac{4}{t}
= \frac{R \cdot 4}{80t^2} = \frac{R}{20t^2}
\]
Final Answer:
\[
\boxed{\cot \theta = \frac{R}{20t^2}}
\]