Step 1: General range formula
For a projectile launched with velocity \( u \) at angle \( \theta \): \[ R = \frac{u^2 \sin 2\theta}{g} \]
Step 2: Time of flight formula
Time of flight for angle \( \theta \): \[ T = \frac{2u \sin \theta}{g} \] Let the two angles be \( \theta \) and \( 90^\circ - \theta \). They will have the same range because: \[ \sin 2\theta = \sin \left[2(90^\circ - \theta)\right] = \sin (180^\circ - 2\theta) = \sin 2\theta \]
Step 3: Compute product of the two times of flight
\[ T_1 = \frac{2u \sin \theta}{g}, \quad T_2 = \frac{2u \cos \theta}{g} \] So the product: \[ T_1 T_2 = \left(\frac{2u \sin \theta}{g}\right) \cdot \left(\frac{2u \cos \theta}{g}\right) = \frac{4u^2 \sin \theta \cos \theta}{g^2} \] Recall: \[ \sin 2\theta = 2 \sin \theta \cos \theta \Rightarrow \sin \theta \cos \theta = \frac{1}{2} \sin 2\theta \] Thus, \[ T_1 T_2 = \frac{4u^2}{g^2} \cdot \frac{1}{2} \sin 2\theta = \frac{2u^2 \sin 2\theta}{g^2} \]
Step 4: Express in terms of range \( R \)
Since: \[ R = \frac{u^2 \sin 2\theta}{g} \Rightarrow \frac{2u^2 \sin 2\theta}{g^2} = \frac{2R}{g} \] So, \[ T_1 T_2 \propto R \]
\( \boxed{R} \)
The general solution of the differential equation \[ (x + y)y \,dx + (y - x)x \,dy = 0 \] is:
Find the area of the region (in square units) enclosed by the curves: \[ y^2 = 8(x+2), \quad y^2 = 4(1-x) \] and the Y-axis.
Evaluate the integral: \[ I = \int_{-3}^{3} |2 - x| dx. \]