A point source is emitting sound waves of intensity \( 16 \times 10^{-8} \, Wm^{-2} \) at the origin. The difference in intensity (magnitude only) at two points located at distances of 2 m and 4 m from the origin respectively will be _____ \( \times 10^{-8} \, Wm^{-2} \).
The intensity of sound waves from a point source decreases with the square of the distance from the source. The formula for intensity \( I \) at a distance \( r \) from a point source is given by:
\[ I = \frac{P}{4\pi r^2}, \] where \( P \) is the power of the source.
Given Values: Intensity at the origin \( I_0 = 16 \times 10^{-8} \, Wm^{-2} \). Distances: \( r_1 = 2 \, m \) and \( r_2 = 4 \, m \).
Intensity at Distances \( r_1 \) and \( r_2 \): The intensity at distance \( r_1 = 2 \, m \):
\[ I_1 = I_0 \left( \frac{r_0}{r_1} \right)^2 = 16 \times 10^{-8} \times \left( \frac{1}{2} \right)^2 = 16 \times 10^{-8} \times \frac{1}{4} = 4 \times 10^{-8} \, Wm^{-2}. \]
The intensity at distance \( r_2 = 4 \, m \):
\[ I_2 = I_0 \left( \frac{r_0}{r_2} \right)^2 = 16 \times 10^{-8} \times \left( \frac{1}{4} \right)^2 = 16 \times 10^{-8} \times \frac{1}{16} = 1 \times 10^{-8} \, Wm^{-2}. \]
Calculating the Difference in Intensity: The difference in intensity \( \Delta I \) between the two points:
\[ \Delta I = I_1 - I_2 = (4 \times 10^{-8} - 1 \times 10^{-8}) \, Wm^{-2} = 3 \times 10^{-8} \, Wm^{-2}. \]
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: