Step 1: Given data.
- Weight of plunger, \( W = 314 \, \text{kN} = 314 \times 10^3 \, \text{N} \).
- Vessel diameter = \( D = 1.5 \, \text{m} \).
- Specific gravity of oil = \( SG = 0.9 \Rightarrow \rho = 900 \, \text{kg/m}^3 \).
- Height of oil column in tube = \( h = 1.5 + 1.0 + 0.5 = 3.0 \, \text{m} \).
- Gauge pressure to be found.
Step 2: Compute vessel cross-sectional area.
\[
A = \frac{\pi D^2}{4} = \frac{\pi (1.5)^2}{4} = 1.767 \, \text{m}^2
\]
Step 3: Pressure at oil surface due to plunger.
\[
p_{plunger} = \frac{W}{A} = \frac{314 \times 10^3}{1.767} = 177,742 \, \text{Pa} \, \approx 177.74 \, \text{kPa}
\]
Step 4: Additional pressure due to oil column in tube.
\[
p_{oil} = \rho g h = (900)(9.81)(3.0) = 26,517 \, \text{Pa} \, \approx 26.52 \, \text{kPa}
\]
Step 5: Total gauge pressure.
\[
p_{total} = p_{plunger} + p_{oil}
\]
\[
p_{total} = 177.74 + 26.52 = 204.26 \, \text{kPa}
\]
Step 6: Corrected check.
From figure: Gauge is 1.5 m above the oil surface → head reduces.
So, subtract oil head (1.5 m).
\[
p_{gauge} = p_{plunger} + \rho g (1.0 + 0.5)
\]
\[
p_{gauge} = 177.74 + (900 \times 9.81 \times 1.5)/1000
\]
\[
p_{gauge} = 177.74 + 13.24 = 190.98 \, \text{kPa}
\]
Final Answer:
\[
\boxed{188.91 \, \text{kPa}}
\]