According to Kepler’s Third Law, the square of the orbital period \( T \) is proportional to the cube of the average distance \( r \) from the Sun:
\(T^2 \propto r^3\)
Step 1: Set up the ratio:
Let \( T_1 = 200 \, \text{days} \) and \( r_1 \) be the original distance. For the new period \( T_2 \) and new distance \( r_2 = \frac{r_1}{4} \), we have:
\(\frac{T_2^2}{T_1^2} = \frac{r_2^3}{r_1^3}\)
Step 2: Substitute \( r_2 = \frac{r_1}{4} \):
\(\frac{T_2^2}{T_1^2} = \frac{\left(\frac{r_1}{4}\right)^3}{r_1^3}\)
\(= \frac{r_1^3}{64r_1^3} = \frac{1}{64}\)
Step 3: Solve for \( T_2 \):
\(\frac{T_1}{T_2} = \sqrt{64} = 8\)
\(T_2 = \frac{T_1}{8} = \frac{200}{8} = 25 \, \text{days}\)
Thus, the time it will take to complete one revolution is 25 days.
The Correct Answer is: 25
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: