The general form of a plane progressive wave is:
\[y = A \cos(\omega t - kx).\]
Comparing with the given equation:
\[y = 2 \cos 2\pi (330 t - x),\]
we identify:
\[\omega = 2\pi \times 330.\]
The angular frequency \(\omega\) is related to the frequency \(f\) by:
\[\omega = 2\pi f \implies 2\pi f = 2\pi \times 330.\]
Thus:
\[f = 330 \, \text{Hz}.\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: