We are given two planes:
\[
\pi_1: 2x - 2y - 2z = 5, \quad \pi_2: x - y + 2z = 24
\]
Let the required plane \( \pi \) be perpendicular to both \( \pi_1 \) and \( \pi_2 \).
Then, its normal vector is perpendicular to the normals of both given planes.
Step 1: Find normal vectors of the given planes
- Normal to \( \pi_1 \): \( \vec{n_1} = \langle 2, -2, -2 \rangle \)
- Normal to \( \pi_2 \): \( \vec{n_2} = \langle 1, -1, 2 \rangle \)
The normal to the required plane is the vector perpendicular to both \( \vec{n_1} \) and \( \vec{n_2} \), i.e.,
\[
\vec{n} = \vec{n_1} \times \vec{n_2}
= \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}
2 & -2 & -2
1 & -1 & 2
\end{vmatrix}
= \hat{i}((-2)(2) - (-2)(-1)) - \hat{j}((2)(2) - (-2)(1)) + \hat{k}((2)(-1) - (-2)(1))
\]
\[
= \hat{i}(-4 - 2) - \hat{j}(4 + 2) + \hat{k}(-2 + 2)
= -6\hat{i} - 6\hat{j} + 0\hat{k}
= \langle -6, -6, 0 \rangle
\]
So the normal vector to the required plane is \( \vec{n} = \langle -6, -6, 0 \rangle \)
Step 2: Equation of the plane
The plane passes through point \( (1, -2, 1) \), and has normal \( \langle -6, -6, 0 \rangle \)
Using the point-normal form of the plane:
\[
-6(x - 1) -6(y + 2) + 0(z - 1) = 0
\Rightarrow -6(x - 1 + y + 2) = 0
\Rightarrow x + y = -1
\]
So, required plane is:
\[
x + y + 1 = 0
\]
Step 3: Distance from point \( (1, 2, 2) \) to this plane
Use the distance formula from point to plane:
\[
D = \frac{|ax + by + cz + d|}{\sqrt{a^2 + b^2 + c^2}}
\]
For plane \( x + y + 1 = 0 \), the coefficients are \( a = 1, b = 1, c = 0, d = 1 \)
\[
D = \frac{|1 \cdot 1 + 1 \cdot 2 + 0 \cdot 2 + 1|}{\sqrt{1^2 + 1^2 + 0^2}}
= \frac{|1 + 2 + 1|}{\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2}
\]
Wait! But this doesn't match the correct answer. Let's recheck the step.
Actually:
\[
x + y + 1 = 0 \Rightarrow \text{then } d = 1, so equation: \( x + y + 1 = 0 \Rightarrow ax + by + cz + d = x + y + 1 \)
Then the correct evaluation for point \( (1, 2, 2) \):
\[
D = \frac{|1 + 2 + 1|}{\sqrt{1^2 + 1^2 + 0^2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2}
\]
Ah! This does match Option A, which is \( 2\sqrt{2} \), not Option C.
So final correct choice is:
\[
\boxed{\text{Option (A) } 2\sqrt{2}}
\]