Step 1: Initial volume.
\[
V_1 = m \cdot v = (0.01)(0.20602) = 0.0020602 \, m^3
\]
Step 2: Area of piston.
\[
A = \frac{\pi d^2}{4} = \frac{\pi (0.25)^2}{4} = 0.0491 \, m^2
\]
Step 3: Displacement volume.
\[
\Delta V = A \cdot \Delta x = 0.0491 \times 0.05 = 0.002455 \, m^3
\]
\[
V_2 = V_1 + \Delta V = 0.0020602 + 0.002455 = 0.004515 \, m^3
\]
Step 4: Polytropic relation.
\[
p_1 V_1^n = p_2 V_2^n
\]
\[
n = \frac{\ln(p_1/p_2)}{\ln(V_2/V_1)}
\]
\[
n = \frac{\ln(1.0/0.35)}{\ln(0.004515/0.0020602)}
\]
\[
n = \frac{\ln(2.857)}{\ln(2.19)} = \frac{1.049}{0.799} = 1.31
\]
Final Answer:
\[
\boxed{1.31}
\]