Step 1: Heat addition at constant pressure.
At constant pressure, the heat added is:
\[
Q = m \cdot c_p \cdot \Delta T
\]
For a gas mixture,
\[
Q = \sum (m_i \, c_{p,i} \, \Delta T)
\]
Step 2: Data given.
\[
m_{H_2} = 4 \, kg, c_{p,H_2} = 14.239 \, kJ/kg\!-\!K
\]
\[
m_{N_2} = 13 \, kg, c_{p,N_2} = 1.040 \, kJ/kg\!-\!K
\]
\[
\Delta T = (350 - 250) = 100 \, K
\]
Step 3: Heat by hydrogen.
\[
Q_{H_2} = m_{H_2} \cdot c_{p,H_2} \cdot \Delta T
= (4)(14.239)(100)
= 5695.6 \, kJ
\]
Step 4: Heat by nitrogen.
\[
Q_{N_2} = m_{N_2} \cdot c_{p,N_2} \cdot \Delta T
= (13)(1.040)(100)
= 1352 \, kJ
\]
Step 5: Total heat.
\[
Q_{total} = Q_{H_2} + Q_{N_2}
= 5695.6 + 1352
= 7047.6 \, kJ
\]
\[
Q_{total} = 7.048 \, MJ
\]
Final Answer:
\[
\boxed{7.048 \, MJ}
\]