The energy of a photon is related to its wavelength \( \lambda \) by the equation:
\[
E = \frac{h c}{\lambda}
\]
Where:
- \( E = 5.0 \, \text{eV} \) (energy of the photon),
- \( h = 6.626 \times 10^{-34} \, \text{J} \cdot \text{s} \) (Planck's constant),
- \( c = 3.0 \times 10^8 \, \text{m/s} \) (speed of light),
- \( \lambda \) is the wavelength.
First, convert the energy from electron volts to joules:
\[
E = 5.0 \, \text{eV} \times 1.602 \times 10^{-19} \, \text{J/eV} = 8.01 \times 10^{-19} \, \text{J}
\]
Now solve for \( \lambda \):
\[
\lambda = \frac{h c}{E}
\]
Substitute the known values:
\[
\lambda = \frac{6.626 \times 10^{-34} \times 3.0 \times 10^8}{8.01 \times 10^{-19}}
\]
\[
\lambda = 2.48 \times 10^{-9} \, \text{m} = 400 \, \text{nm}
\]
Thus, the wavelength of the photon is \( 400 \, \text{nm} \).