The duration required for the stone to reach the ground.
\(t=\sqrt{\frac{2 L}{g}}+\frac{L}{C}\)
Here,C represents the speed of sound.
Now, differentiating the above equation
\(\frac{d t}{d L}=\sqrt{\frac{L}{g}} \times \frac{1}{2 \sqrt{L}}+\frac{1}{C}\)
\(dL =\frac{ dt }{\frac{1}{\sqrt{2 gL }}+\frac{1}{ C }}\)
We hat dt=0.01
\(\Rightarrow \frac{ dL }{ L } \times 100=\left(\frac{ dt }{\frac{1}{\sqrt{2 gL }}+\frac{1}{ C }}\right) \frac{1}{ L } \times 100\)
\(=\frac{15}{16 \%} \approx 1 \%\)
Match Column-I with Column-II related to an electric dipole of dipole moment \( \vec{p} \) that is placed in a uniform electric field \( \vec{E} \): 
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
The physical world includes the complications of the natural world around us. It is a type of analysis of the physical world around us to understand how it works. The fundamental forces that control nature are: