The frequency \( f \) of a simple pendulum is given by:
\[
f = \frac{1}{2\pi} \sqrt{\frac{g}{l}}
\]
When the pendulum is clamped at its midpoint, the new length becomes \( l' = \frac{l}{2} \). The new frequency is:
\[
\begin{align}
f' = \frac{1}{2\pi} \sqrt{\frac{g}{l/2}} = \frac{1}{2\pi} \sqrt{\frac{2g}{l}} = \sqrt{2} \cdot f
\]
Given \( f = 8 \, \text{Hz} \), so:
\[
\begin{align}
f' = \sqrt{2} \cdot 8 \approx 1.414 \cdot 8 = 11.31 \approx 11.28 \, \text{Hz}
\]