A pendulum consists of a bob of mass $m =01\, kg$ and a massless inextensible string of length $L =10 \,m $ It is suspended from a fixed point at height $H =09 \,m$ above a frictionless horizontal floor Initially, the bob of the pendulum is lying on the floor at rest vertically below the point of suspension A horizontal impulse $P =02\, kg - m / s$ is imparted to the bob at some instant After the bob slides for some distance, the string becomes taut and the bob lifts off the floor The magnitude of the angular momentum of the pendulum about the point of suspension just before the bob lifts off is $J \,kg - m ^{2} / s$ The kinetic energy of the pendulum just after the lift-off is $K$ Joules The value of $J$ is ______
A cylindrical tube \(AB\) of length \(l\), closed at both ends, contains an ideal gas of \(1\) mol having molecular weight \(M\). The tube is rotated in a horizontal plane with constant angular velocity \(\omega\) about an axis perpendicular to \(AB\) and passing through the edge at end \(A\), as shown in the figure. If \(P_A\) and \(P_B\) are the pressures at \(A\) and \(B\) respectively, then (consider the temperature to be same at all points in the tube) 
As shown in the figure, radius of gyration about the axis shown in \(\sqrt{n}\) cm for a solid sphere. Find 'n'. 
When rod becomes horizontal find its angular velocity. It is pivoted at point A as shown. 
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?