Step 1: Write given relation.
\[
t = a e^{\alpha} + b
\]
Step 2: Use calibration conditions.
At ice point (\(t = 0^\circ C, \alpha = 6\)):
\[
0 = a e^6 + b \Rightarrow b = -a e^6
\]
At steam point (\(t = 100^\circ C, \alpha = 9\)):
\[
100 = a e^9 + b
\]
Substitute \(b = -a e^6\):
\[
100 = a e^9 - a e^6
\]
\[
a (e^9 - e^6) = 100
\]
\[
a = \frac{100}{e^9 - e^6}
\]
Step 3: Find temperature at \(\alpha = 7\).
\[
t = a e^7 + b
\]
\[
= a e^7 - a e^6
\]
\[
= a (e^7 - e^6)
\]
\[
= \frac{100 (e^7 - e^6)}{e^9 - e^6}
\]
Numerical calculation:
\[
e^6 = 403.43, e^7 = 1096.63, e^9 = 8103.08
\]
\[
t = \frac{100 (1096.63 - 403.43)}{8103.08 - 403.43}
\]
\[
t = \frac{100 (693.20)}{7699.65} = 8.99
\]
Oops! Let’s carefully check again:
Wait! Recalculate:
\[
t = \frac{100 (e^7 - e^6)}{e^9 - e^6}
\]
Numerator: \(e^7 - e^6 = 1096.63 - 403.43 = 693.20\).
Denominator: \(e^9 - e^6 = 8103.08 - 403.43 = 7699.65\).
\[
t = \frac{100 \times 693.20}{7699.65} = 8.99^\circ C
\]
Final Answer:
\[
\boxed{8.99^\circ C}
\]