We are given the relation:
\[
t = ae^\alpha + b
\]
At ice point (\( t = 0^\circ {C} \), \( \alpha = 6 \)):
\[
0 = ae^6 + b \Rightarrow b = -ae^6 \cdots (1)
\]
At steam point (\( t = 100^\circ {C} \), \( \alpha = 9 \)):
\[
100 = ae^9 + b
\]
Substitute equation (1) into the second equation:
\[
100 = ae^9 - ae^6 = a(e^9 - e^6)
\Rightarrow
a = \frac{100}{e^9 - e^6}
\]
Now calculate \( a \) and then find \( t \) when \( \alpha = 7 \):
\[
a = \frac{100}{e^9 - e^6}
\Rightarrow
t = ae^7 + b = ae^7 - ae^6 = a(e^7 - e^6)
\]
\[
t = \frac{100}{e^9 - e^6}(e^7 - e^6)
\]
Let’s simplify numerically:
\[
e^6 \approx 403.43,
e^7 \approx 1096.63,
e^9 \approx 8103.08
\]
\[
t = \frac{100}{8103.08 - 403.43}(1096.63 - 403.43)
= \frac{100}{7699.65}(693.20)
\approx 9.00^\circ {C}
\]