Which of the following is the correct form of the mass divergence form of the continuity equation for a compressible fluid? [In the given equations, \( \rho \) is the density and \( \nabla \) the three-dimensional velocity vector of the fluid.]
[(i)] $\displaystyle \frac{\partial \rho}{\partial t} + \nabla \times (\rho \mathbf{v}) = 0$
[(ii)] $\displaystyle \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$
[(iii)] $\displaystyle \frac{\partial \mathbf{v}}{\partial t} + \rho \cdot \nabla \mathbf{v} = 0$
[(iv)] $\displaystyle \frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla \rho = 0$

An electricity utility company charges ₹7 per kWh. If a 40-watt desk light is left on for 10 hours each night for 180 days, what would be the cost of energy consumption? If the desk light is on for 2 more hours each night for the 180 days, what would be the percentage-increase in the cost of energy consumption?

