To determine the position of the particle from the mean position when its velocity is \(2 \, \text{cm/sec}\), we can use the principles of Simple Harmonic Motion (SHM).
Given:
Maximum speed at mean position, \(v_{\text{max}} = 6 \, \text{cm/sec}\)
Amplitude of SHM, \(A = 4 \, \text{cm}\)
Velocity at position \(x\), \(v = 2 \, \text{cm/sec}\)
Step 1: Relate Maximum Speed to Angular Frequency
In SHM, the maximum speed \(v_{\text{max}}\) is related to the angular frequency \(\omega\) and amplitude \(A\) by the equation:
\[
v_{\text{max}} = \omega A
\]
Solving for \(\omega\):
\[
\omega = \frac{v_{\text{max}}}{A} = \frac{6 \, \text{cm/sec}}{4 \, \text{cm}} = 1.5 \, \text{sec}^{-1}
\]
Step 2: Use the Velocity-Position Relationship in SHM
The velocity \(v\) of a particle in SHM at position \(x\) is given by:
\[
v = \omega \sqrt{A^2 - x^2}
\]
Solving for \(x\):
\[
v = \omega \sqrt{A^2 - x^2}
\Rightarrow \sqrt{A^2 - x^2} = \frac{v}{\omega}
\Rightarrow A^2 - x^2 = \left( \frac{v}{\omega} \right)^2
\Rightarrow x^2 = A^2 - \left( \frac{v}{\omega} \right)^2
\Rightarrow x = \sqrt{A^2 - \left( \frac{v}{\omega} \right)^2}
\]
Step 3: Substitute the Known Values
Substitute \(A = 4 \, \text{cm}\), \(v = 2 \, \text{cm/sec}\), and \(\omega = 1.5 \, \text{sec}^{-1}\) into the equation:
\[
x = \sqrt{4^2 - \left( \frac{2}{1.5} \right)^2}
x = \sqrt{16 - \left( \frac{4}{2.25} \right)}
x = \sqrt{16 - \frac{16}{9}}
x = \sqrt{\frac{144}{9} - \frac{16}{9}}
x = \sqrt{\frac{128}{9}}
x = \frac{\sqrt{128}}{3}
\]\[
x = \frac{8 \sqrt{2}}{3} \approx 3.77 \, \text{cm}
\]
Rounding to the nearest whole number:
\[
x \approx 4 \, \text{cm}
\]
Conclusion:
The position of the particle from the mean position when its velocity is \(2 \, \text{cm/sec}\) is:
\[
\boxed{4 \, \text{cm}}
\]