Step 1: {Define angular momentum}
Angular momentum at maximum height is given by: \[ L = m v H \] where \( H \) is the maximum height.
Step 2: {Find the horizontal velocity}
The horizontal component of velocity remains constant: \[ v = u \cos 30^\circ = u \times \frac{\sqrt{3}}{2} \]
Step 3: {Find the maximum height}
Using the kinematic equation: \[ H = \frac{u^2 \sin^2 30^\circ}{2g} \] Substituting \( \sin 30^\circ = \frac{1}{2} \): \[ H = \frac{u^2 \times \left(\frac{1}{2}\right)^2}{2g} = \frac{u^2}{8g} \]
Step 4: {Calculate angular momentum}
\[ L = m u \cos 30^\circ \times H \] \[ = m u \times \frac{\sqrt{3}}{2} \times \frac{u^2}{8g} \] \[ = \frac{\sqrt{3} m u^3}{16 g} \] Thus, the correct answer is (A) \( \frac{\sqrt{3}}{16} \frac{m u^3}{g} \).