The de Broglie wavelength of a particle is given by the formula:
\[
\lambda = \frac{h}{mv}
\]
Where:
- \( h = 6.626 \times 10^{-34} \, \text{Js} \) is Planck's constant,
- \( m \) is the mass of the particle,
- \( v \) is the velocity of the particle.
For the particle to have the same wavelength as the neutron, we have:
\[
\frac{h}{mv} = \frac{h}{m_n v_n}
\]
Where:
- \( m_n = 1.67 \times 10^{-27} \, \text{Kg} \) is the mass of the neutron,
- \( v_n = 3 \times 10^5 \, \text{ms}^{-1} \) is the velocity of the neutron.
Using the mass of the particle as \( m = 2 \times 10^{-3} \, \text{Kg} \) and equating the wavelengths:
\[
\frac{6.626 \times 10^{-34}}{(2 \times 10^{-3})(v)} = \frac{6.626 \times 10^{-34}}{(1.67 \times 10^{-27})(3 \times 10^5)}
\]
Solving for \( v \):
\[
v = \frac{1.67 \times 10^{-27} \times 3 \times 10^5}{2 \times 10^{-3}} = 2.5 \times 10^{-16} \, \text{ms}^{-1}
\]
Thus, the velocity of the particle is \( 2.5 \times 10^{-16} \, \text{ms}^{-1} \).