The de-Broglie wavelength ($\lambda$) of a particle is related to its momentum ($p$) by:
$\lambda = \frac{h}{p}$, where $h$ is Planck's constant.
So, $p = \frac{h}{\lambda}$.
The kinetic energy (KE) of a non-relativistic particle is related to its momentum by:
KE $= \frac{p^2}{2m}$, where $m$ is the mass of the particle.
Substituting $p = h/\lambda$:
KE $= \frac{(h/\lambda)^2}{2m} = \frac{h^2}{2m\lambda^2}$.
Given values:
Mass $m = 1 \times 10^{-30} \text{ kg}$.
de-Broglie wavelength $\lambda = 660 \text{ nm} = 660 \times 10^{-9} \text{ m} = 6.6 \times 10^{-7} \text{ m}$.
Planck's constant $h = 6.6 \times 10^{-34} \text{ J-s}$.
Electric charge $q = 1.6 \times 10^{-19} \text{ C}$ (this is the elementary charge, $e$. It will be used for converting Joules to eV).
Calculate KE in Joules first:
KE $= \frac{(6.6 \times 10^{-34} \text{ J-s})^2}{2 \times (1 \times 10^{-30} \text{ kg}) \times (6.6 \times 10^{-7} \text{ m})^2}$.
KE $= \frac{(6.6)^2 \times (10^{-34})^2}{2 \times 10^{-30} \times (6.6)^2 \times (10^{-7})^2}$.
KE $= \frac{(6.6)^2 \times 10^{-68}}{2 \times 10^{-30} \times (6.6)^2 \times 10^{-14}}$.
The $(6.6)^2$ terms cancel out:
KE $= \frac{10^{-68}}{2 \times 10^{-30} \times 10^{-14}} = \frac{10^{-68}}{2 \times 10^{-44}}$.
KE $= \frac{1}{2} \times 10^{-68 - (-44)} = \frac{1}{2} \times 10^{-68 + 44} = \frac{1}{2} \times 10^{-24} \text{ J}$.
KE $= 0.5 \times 10^{-24} \text{ J}$.
Now, convert KE from Joules to electron-volts (eV).
$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$.
So, KE (in eV) $= \frac{\text{KE (in J)}}{1.6 \times 10^{-19}}$.
KE (in eV) $= \frac{0.5 \times 10^{-24}}{1.6 \times 10^{-19}}$.
KE (in eV) $= \frac{0.5}{1.6} \times 10^{-24 - (-19)} = \frac{0.5}{1.6} \times 10^{-24 + 19} = \frac{0.5}{1.6} \times 10^{-5}$.
$\frac{0.5}{1.6} = \frac{5}{16}$.
$\frac{5}{16} = 0.3125$.
So, KE $= 0.3125 \times 10^{-5} \text{ eV} = 3.125 \times 10^{-6} \text{ eV}$.
This value is approximately $3.1 \times 10^{-6}$ eV.
This matches option (d).
\[ \boxed{3.1 \times 10^{-6} \text{ eV}} \]