Given:
\[ V = \frac{2\pi R}{T} \]
The maximum height attained by the particle is given by:
\[ H = \frac{v^2 \sin^2 \theta}{2g} \]
We are given that:
\[ 4R = \frac{4\pi^2 R^2 \sin^2 \theta}{T^2 \cdot 2g} \]
Simplifying:
\[ \sin^2 \theta = \frac{2gT^2}{\pi^2 R} \]
Taking the square root:
\[ \sin \theta = \sqrt{\frac{2gT^2}{\pi^2 R}} \]
Thus:
\[ \theta = \sin^{-1} \left( \sqrt{\frac{2gT^2}{\pi^2 R}} \right) \]
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to: