The formula for magnetic moment \(M\) of a paramagnetic substance is given by:
\[
M = \chi \times V \times H
\]
Where:
- \(M\) is the magnetic moment,
- \(\chi\) is the susceptibility,
- \(V\) is the volume of the substance,
- \(H\) is the magnetic field intensity.
Given:
- \(M = 243 \times 10^{-6}\) Am\(^2\),
- \(H = 150 \times 10^{3}\) Am\(^{-1}\),
- The side length of the cube is 3 cm, so the volume \(V = (3 \, \text{cm})^3 = 27 \, \text{cm}^3 = 27 \times 10^{-6} \, \text{m}^3\).
Rearranging the formula to find \(\chi\):
\[
\chi = \frac{M}{V \times H}
\]
Substituting the given values:
\[
\chi = \frac{243 \times 10^{-6}}{(27 \times 10^{-6}) \times (150 \times 10^{3})}
\]
\[
\chi = \frac{243}{27 \times 150}
\]
\[
\chi = \frac{243}{4050} = 6 \times 10^{-5}
\]
Thus, the correct answer is \(6 \times 10^{-5}\).