Capacitance between the parallel plates of the capacitor, C = 8 pF Initially, distance between the parallel plates was d and it was filled with air. Dielectric constant of air, k = 1 Capacitance, C, is given by the formula,
\(C = \frac{kε°A}{d} = \frac{ε°A}{d} …………………. (1)\)
Where, A = Area of each plate ε° = Permittivity of free space If distance between the plates is reduced to half, then new distance, d1 = d/2 Dielectric constant of the substance filled in between the plates, k1= 6 Hence, capacitance of the capacitor becomes.
\(C_1 =\frac{ k1ε°A}d_1 =\frac{6ε°A/d}{2}=\frac{12ε°A}{d}………………….( 2)\)
Taking ratios of equations (1) and (2), we obtain
C1 = 2 × 6 C = 12 C = 12 × 8 pF = 96 pF
Therefore, the capacitance between the plates is 96 pF.
\(C = 8pF = 8 × 10^{-12}\ F\)
\(C=\frac {ε_0A}{d}\)
\(8\times 10^{-12}=\frac {ε_0A}{d}\)
New capacitance \(C'=\frac {ε_0KA}{d'}\)
Where \(K=6\) and \(d'=\frac d2\)
\(C'=\frac {ε_0×6×A}{\frac d2}\)
\(C'=\frac {12×ε_0×A}{d}\)
\(C'=12×8×10^{-12}\)
\(C'=96×10^{-12}\ F\)
\(C'=96\ pF\)
So, the answer is \(96\ pF\).
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Time period of a simple pendulum is longer at the top of a mountain than that at the base of the mountain.
Reason (R): Time period of a simple pendulum decreases with increasing value of acceleration due to gravity and vice-versa. In the light of the above statements, choose the most appropriate answer from the options given below:
Arrange the following in the ascending order of wavelength (\( \lambda \)):
(A) Microwaves (\( \lambda_1 \))
(B) Ultraviolet rays (\( \lambda_2 \))
(C) Infrared rays (\( \lambda_3 \))
(D) X-rays (\( \lambda_4 \))
Choose the most appropriate answer from the options given below:

“One of these days you’re going to talk yourself into a load of trouble,” her father said aggressively. What do you learn about Sophie’s father from these lines? (Going Places)
The electrostatic potential is also known as the electric field potential, electric potential, or potential drop is defined as “The amount of work that is done in order to move a unit charge from a reference point to a specific point inside the field without producing an acceleration.”
SI unit of electrostatic potential - volt
Other units - statvolt
Symbol of electrostatic potential - V or φ
Dimensional formula - ML2T3I-1
The electric potential energy of the system is given by the following formula:
U = 1/(4πεº) × [q1q2/d]
Where q1 and q2 are the two charges that are separated by the distance d.