Given: - Number of turns: \(N = 100\) - Area of each turn: \(A = 2.0 \, \text{cm}^2 = 2.0 \times 10^{-4} \, \text{m}^2\) - Magnetic field: \(B = 0.01 \, \text{T}\) - Deflection: \(\theta = 0.05 \, \text{radian}\) - Current: \(I = 10 \, \text{mA} = 10 \times 10^{-3} \, \text{A}\)
The torque (\(\tau\)) acting on a moving coil galvanometer is given by:
\[ \tau = N \times B \times I \times A \]
Substituting the given values:
\[ \tau = 100 \times 0.01 \, \text{T} \times 10 \times 10^{-3} \, \text{A} \times 2.0 \times 10^{-4} \, \text{m}^2 \] \[ \tau = 100 \times 0.01 \times 0.01 \times 2.0 \times 10^{-4} \, \text{N} \times \text{m} \] \[ \tau = 2 \times 10^{-5} \, \text{N} \times \text{m} \]
The torque is also related to the torsional constant (\(k\)) and deflection (\(\theta\)) by:
\[ \tau = k \times \theta \]
Rearranging to find \(k\):
\[ k = \frac{\tau}{\theta} \]
Substituting the given values:
\[ k = \frac{2 \times 10^{-5}}{0.05} \, \text{N} \times \text{m/rad} \] \[ k = 4 \times 10^{-4} \, \text{N} \times \text{m/rad} \]
Given that \(k = x \times 10^{-5} \, \text{N} \times \text{m/rad}\):
\[ 4 \times 10^{-4} = x \times 10^{-5} \]
Solving for \(x\):
\[ x = 4 \]
Conclusion: The value of \(x\) is 4.
Group-I | Group-II | ||
P | Magnetic | 1 | Chargeability |
Q | Gravity | 2 | Electrical conductivity |
R | Magnetotelluric | 3 | Susceptibility |
S | Induced Polarization | 4 | Density |
The net current flowing in the given circuit is ___ A.
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .