The frequency of light remains unchanged when it passes from one medium to another.
Given frequency \( f = 5 \times 10^{14} \) Hz.
The speed of light in air (approximately vacuum) is \( c = 3 \times 10^8 \) m/s.
The wavelength of light in air (\( \lambda_{air} \)) is given by: \[ \lambda_{air} = \frac{c}{f} = \frac{3 \times 10^8 \, \text{m/s}}{5 \times 10^{14} \, \text{Hz}} = 0.6 \times 10^{-6} \, \text{m} = 600 \times 10^{-9} \, \text{m} = 600 \, \text{nm} \] The refractive index of the medium is given as \( \mu = 2 \). The wavelength of light in the medium (\( \lambda_{medium} \)) is related to the wavelength in vacuum (or air) by the refractive index: \[ \lambda_{medium} = \frac{\lambda_{air}}{\mu} \] Substituting the values: \[ \lambda_{medium} = \frac{600 \, \text{nm}}{2} = 300 \, \text{nm} \] The wavelength of the refracted light in the medium is 300 nm.
Light from a point source in air falls on a spherical glass surface (refractive index, \( \mu = 1.5 \) and radius of curvature \( R = 50 \) cm). The image is formed at a distance of 200 cm from the glass surface inside the glass. The magnitude of distance of the light source from the glass surface is 1cm.
Distance between object and its image (magnified by $-\frac{1}{3}$ ) is 30 cm. The focal length of the mirror used is $\left(\frac{\mathrm{x}}{4}\right) \mathrm{cm}$, where magnitude of value of x is _______ .
When an object is placed 40 cm away from a spherical mirror an image of magnification $\frac{1}{2}$ is produced. To obtain an image with magnification of $\frac{1}{3}$, the object is to be moved:
Match List-I with List-II: List-I
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)