The frequency of light remains unchanged when it passes from one medium to another.
Given frequency \( f = 5 \times 10^{14} \) Hz.
The speed of light in air (approximately vacuum) is \( c = 3 \times 10^8 \) m/s.
The wavelength of light in air (\( \lambda_{air} \)) is given by: \[ \lambda_{air} = \frac{c}{f} = \frac{3 \times 10^8 \, \text{m/s}}{5 \times 10^{14} \, \text{Hz}} = 0.6 \times 10^{-6} \, \text{m} = 600 \times 10^{-9} \, \text{m} = 600 \, \text{nm} \] The refractive index of the medium is given as \( \mu = 2 \). The wavelength of light in the medium (\( \lambda_{medium} \)) is related to the wavelength in vacuum (or air) by the refractive index: \[ \lambda_{medium} = \frac{\lambda_{air}}{\mu} \] Substituting the values: \[ \lambda_{medium} = \frac{600 \, \text{nm}}{2} = 300 \, \text{nm} \] The wavelength of the refracted light in the medium is 300 nm.
Match List-I with List-II for the index of refraction for yellow light of sodium (589 nm)
LIST-I (Materials) | LIST-II (Refractive Indices) | ||
---|---|---|---|
A. | Ice | I. | 1.309 |
B. | Rock salt (NaCl) | II. | 1.460 |
C. | CCl₄ | III. | 1.544 |
D. | Diamond | IV. | 2.417 |
Choose the correct answer from the options given below:
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Compton Effect | IV. | Scattering |
B. | Colors in thin film | II. | Interference |
C. | Double Refraction | III. | Polarization |
D. | Bragg's Equation | I. | Diffraction |
Choose the correct answer from the options given below:
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: