Given: Mass per unit length of the metallic rod is
Mass per unit length \( \frac{m}{l} = 0.5 \, \text{kg/m} \).
Let \( I \) be the current flowing through the rod. For equilibrium, the forces acting on the rod balance each other:
\( mg \sin 30^\circ = I B \cos 30^\circ \)
Solving for the current \( I \):
\( I = \frac{mg \sin 30^\circ}{B \cos 30^\circ} \)
Substituting the known values:
\( I = \frac{0.5 \times 9.8 \times \sin 30^\circ}{0.25 \times \cos 30^\circ} = 11.32 \, \text{A} \)
Therefore, the current flowing through the metallic rod is \( 11.32 \, \text{A} \).
\( I = \frac{mg}{B} \tan 30^\circ \)
Given Values:
Substituting the values into the equation:
\( I = \frac{0.5 \times 9.8}{0.25 \times \sqrt{3}} \)
Simplifying the equation:
\( I = \frac{4.9}{0.25 \times 1.732} = \frac{4.9}{0.433} \)
\( I \approx 11.32 \, \text{A} \)
Therefore, the current required for equilibrium is:
\( \boxed{I \approx 11.32 \, \text{A}} \)