Radius of the disc \( R = 0.
3 \) m.
Angular speed \( \omega = 60 \, \text{rad s}^{-1} \).
Magnetic field strength \( B = 5 \times 10^{-2} \, \text{T} \).
The plane of the disc is perpendicular to the magnetic field, so the field lines are parallel to the axis of rotation.
The emf induced between the centre and a point on the rim of a rotating metallic disc in a uniform magnetic field perpendicular to its plane is given by:
\[ \mathcal{E} = \frac{1}{2} B \omega R^2 \]
Substitute the given values:
\[ \mathcal{E} = \frac{1}{2} (5 \times 10^{-2} \, \text{T}) (60 \, \text{rad s}^{-1}) (0.
3 \, \text{m})^2 \]
\[ \mathcal{E} = \frac{1}{2} \times 5 \times 10^{-2} \times 60 \times (0.
09) \, \text{V} \]
\[ \mathcal{E} = \frac{1}{2} \times 5 \times 60 \times 0.
09 \times 10^{-2} \, \text{V} \]
\[ \mathcal{E} = 1 \times 5 \times 30 \times 0.
09 \times 10^{-2} \, \text{V} \]
\[ \mathcal{E} = 150 \times 0.
09 \times 10^{-2} \, \text{V} \]
\( 150 \times 0.
09 = 150 \times \frac{9}{100} = \frac{15 \times 9}{10} = \frac{135}{10} = 13.
5 \).
\[ \mathcal{E} = 13.
5 \times 10^{-2} \, \text{V} = 0.
135 \, \text{V} \]
This matches option (4).