Assume: - Mass of incoming particle: \(M = 2m\) - Target mass at rest: \(m\) - Elastic collision: momentum and kinetic energy conserved Use result from elastic collision (scattering in lab frame): If a moving particle of mass \(M\) collides elastically with a stationary particle of mass \(m\), and both particles move after collision, then the angle \(\theta\) between their velocity vectors satisfies: \[ \tan \theta_{\text{max}} = \frac{m}{M} \Rightarrow \tan \theta_{\text{max}} = \frac{m}{2m} = \frac{1}{2} \Rightarrow \theta_{\text{max}} = \tan^{-1} \left( \frac{1}{2} \right) \] Final Answer \[ \boxed{\theta_{\max} = \tan^{-1} \left( \frac{1}{2} \right)} \]
As shown below, bob A of a pendulum having a massless string of length \( R \) is released from 60° to the vertical. It hits another bob B of half the mass that is at rest on a frictionless table in the center. Assuming elastic collision, the magnitude of the velocity of bob A after the collision will be (take \( g \) as acceleration due to gravity):
The sum of the spin-only magnetic moment values (in B.M.) of $[\text{Mn}(\text{Br})_6]^{3-}$ and $[\text{Mn}(\text{CN})_6]^{3-}$ is ____.