Assume: - Mass of incoming particle: \(M = 2m\) - Target mass at rest: \(m\) - Elastic collision: momentum and kinetic energy conserved Use result from elastic collision (scattering in lab frame): If a moving particle of mass \(M\) collides elastically with a stationary particle of mass \(m\), and both particles move after collision, then the angle \(\theta\) between their velocity vectors satisfies: \[ \tan \theta_{\text{max}} = \frac{m}{M} \Rightarrow \tan \theta_{\text{max}} = \frac{m}{2m} = \frac{1}{2} \Rightarrow \theta_{\text{max}} = \tan^{-1} \left( \frac{1}{2} \right) \] Final Answer \[ \boxed{\theta_{\max} = \tan^{-1} \left( \frac{1}{2} \right)} \]

As shown below, bob A of a pendulum having a massless string of length \( R \) is released from 60° to the vertical. It hits another bob B of half the mass that is at rest on a frictionless table in the center. Assuming elastic collision, the magnitude of the velocity of bob A after the collision will be (take \( g \) as acceleration due to gravity):

The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is: