A 2 $\text{kg}$ mass is attached to a spring with spring constant $ k = 200, \text{N/m} $. If the mass is displaced by $ 0.1, \text{m} $, what is the potential energy stored in the spring?

| List-I | List-II |
|---|---|
| (A) A force that restores an elastic body of unit area to its original state | (I) Bulk modulus |
| (B) Two equal and opposite forces parallel to opposite faces | (IV) Shear modulus |
| (C) Forces perpendicular everywhere to the surface per unit area same everywhere | (III) Stress |
| (D) Two equal and opposite forces perpendicular to opposite faces | (II) Young's modulus |
If \( S \) and \( S' \) are the foci of the ellipse \[ \frac{x^2}{18} + \frac{y^2}{9} = 1 \] and \( P \) is a point on the ellipse, then \[ \min (SP \cdot S'P) + \max (SP \cdot S'P) \] is equal to:

Given below are two statements I and II.
Statement I: Dumas method is used for estimation of "Nitrogen" in an organic compound.
Statement II: Dumas method involves the formation of ammonium sulfate by heating the organic compound with concentrated H\(_2\)SO\(_4\). In the light of the above statements, choose the correct answer from the options given below:
Considering Bohr’s atomic model for hydrogen atom :
(A) the energy of H atom in ground state is same as energy of He+ ion in its first excited state.
(B) the energy of H atom in ground state is same as that for Li++ ion in its second excited state.
(C) the energy of H atom in its ground state is same as that of He+ ion for its ground state.
(D) the energy of He+ ion in its first excited state is same as that for Li++ ion in its ground state.
Mechanical properties of solids intricate the characteristics such as the resistance to deformation and their strength. Strength is the ability of an object to resist the applied stress, to what extent can it bear the stress.