Step 1: Understanding Power Calculation The power of the gun is given by the rate of change of kinetic energy: \[ P = \frac{\Delta KE}{\Delta t} \] The kinetic energy of a single bullet is: \[ KE = \frac{1}{2} m v^2 \] where: \( m = 10g = 10 \times 10^{-3} { kg} \) (mass of one bullet), \( v = 600 { m/s} \) (velocity of bullet).
Step 2: Finding the Kinetic Energy of One Bullet \[ KE = \frac{1}{2} \times (10 \times 10^{-3}) \times (600)^2 \] \[ = \frac{1}{2} \times 0.01 \times 360000 \] \[ = \frac{3600}{2} = 1800 { J} \]
Step 3: Finding Power Output The gun fires 300 bullets per minute, i.e., 5 bullets per second: \[ P = 5 \times 1800 \] \[ = 9000 { W} = 9 { kW} \] Thus, the correct answer is: \[ P = 9 { kW} \]